Lógica Computacional

Demonstrações Formais

Dedução Natural

Introdução e Eliminação da Conjunção

Introdução e Eliminação da Disjunção

Demonstrações Formais

- A análise do raciocínio feito durante as demonstrações feitas anteriormente e envolvendo conjunções e disjunções podem ser agora formalizados em regras de inferência usadas no sistema formal de Dedução Natural.
- Como explicado anteriormente uma demonstração é uma sequência Γ de fórmulas,

 - continuada por fórmulas justificadas por regras de inferência do sistema, aplicadas a fórmulas anteriores na sequência;
 - Sendo a última fórmula, φ, a que se pretende demonstrar.
- Vários sistemas de dedução (ou de demonstração) têm sido propostos e estudados, que se distinguem entre si pela linguagem em que se podem escrever as fórmulas de Γ e pelas regras de inferência utilizadas.
- Vamos estar naturalmente interessados na linguagem das fórmulas de 1ª ordem (FPOs) já definidas a partir de fórmulas atómicas e dos operadores Booleanos de conjunção (∧), disjunção (∨) e negação (¬).

Demonstrações e Sistemas de Dedução

- Em geral, estaremos interessados em saber se a partir de um conjunto de premissas Φ é possível demonstrar uma fórmula ϕ no sistema de dedução X, usando as regras de inferência desse sistema X, o que denotaremos por

$$\Phi \mid -_{\mathsf{X}} \varphi$$

- Obviamente, para um sistema ser útil as suas regras de inferência deverão ser de alguma forma adequadas.
- Em particular, estaremos interessados em utilizar sistemas de dedução que sejam **coerentes** e **completos**, ou seja em que se possam estabelecer as seguinte relações entre formulas demonstráveis no sistema X e conclusões válidas:

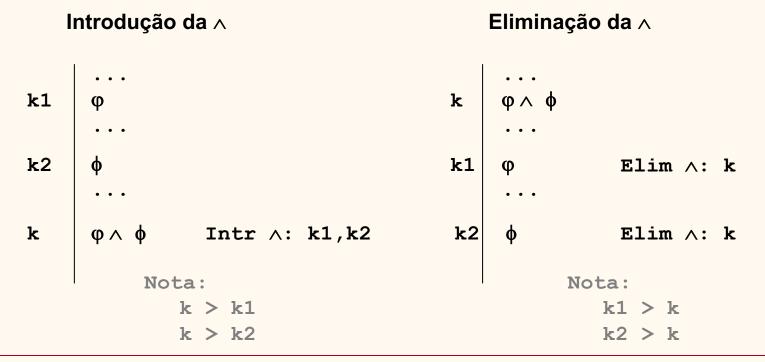
- Coerência:
$$\Phi \mid -_{\mathsf{X}} \phi = 0 \Rightarrow \Phi \mid = \phi$$

- Completude:
$$\Phi \models \phi \implies \Phi \mid -\chi \phi$$

- Este é o caso do sistema de **Dedução Natural** em que, como o nome indica, as regras de inferência tentam captar as formas de raciocínio usadas "no dia a dia".

Introdução e Eliminação da Conjunção

- Neste sistema, e como vimos nos exemplos anteriores de argumentação em língua natural, o raciocínio pode ser formalizado através de regras de **Introdução** e de **Eliminação** dos operadores Booleanos (tal como já tinha sido feito com o predicado de igualdade).
- No sistema de **Dedução Natural**, as regras de introdução e eliminação da conjunção são as seguintes



Introdução e Eliminação da Conjunção

Estas regras permitem naturalmente formalizar os raciocínios feitos anteriormente.

Exemplo:

```
1 A Maria é alta
2 O João é baixo
3 A Maria é alta e o João é baixo
```

```
1 Alta(maria)
2 Baixo(joão)
3 Alta(maria) \( \triangle \text{ Baixo(joão)} \) Intr \( \triangle \triangle 1,2 \)
```

Introdução da Disjunção

- A regra de introdução da disjunção é definida da seguinte forma.

Introdução da ∨

Introdução da Disjunção

- Como vimos anteriormente, ao invés da conjunção, a introdução da disjunção permite concluir uma fórmula mais "fraca" do que a fórmula de partida, como se pode notar no exemplo seguinte.

Exemplo:

```
1 A Maria é alta
2 A Maria é alta ou o João é baixo
```

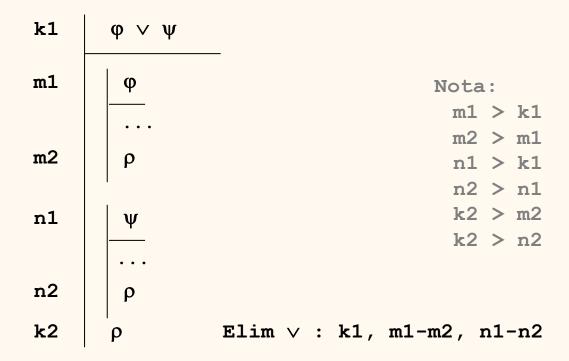
```
1 Alta(maria)
2 Alta(maria) ∨ Baixo(joão) Intr ∨: 1
```

```
1 Alta(maria)
2 Baixo(joão) ∨ Alta(maria) Intr ∨: 1
```

Eliminação da Disjunção

- A eliminação da disjunção é a regra do sistema de dedução natural que capta o raciocínio por casos. É definida como se segue.

Eliminação da v



Distribuição da 🔨 em Relação à 🗸

- A partir destas regras poderemos verificar que certas regras de equivalência são demonstráveis no sistema DN. Em particular poderemos demonstrar as regras da distribuição envolvendo disjunções e conjunções

$$A \wedge (B \vee C) \mid = (A \wedge B) \vee (A \wedge C)$$

1	A ^ (B V C)		
2	A	Elim ∧: 1	
3 4	B V C	Elim ∧: 1	
4	В		
5	A ^ B	Intr ∧: 2,4	
6	(A ∧ B) ∨ (A ∧ C)	Intr ∨: 5	
7	C		
8	A ^ C	Intr ∧: 2,7	
9	(A ∧ B) ∨ (A ∧ C)	<pre>Intr v: 8</pre>	
10	(A ^ B) V (A ^ C)	Elim V: 3,4-6,	7-9

Distribuição da 🔨 em Relação à 🗸

$$(A \wedge B) \vee (A \wedge C) \mid = A \wedge (B \vee C)$$

1	(A ∧ B) ∨ (A ∧ C)		
2	A ^ B		
3	A	Elim ∧:	2
4	В	Elim <>:	2
5	B V C	Intr V:	4
6	A ^ (B V C)	Intr ∧:	3,5
7	A A C		
8	A	Elim <>:	7
9	С	Elim <>:	7
10	B V C	<pre>Intr v:</pre>	9
11	A ^ (B V C)	Intr ∧:	8,10
12	A ^ (B V C)	Elim ∨:	1,2-6,7-11

Distribuição da 🗸 em Relação à 🔨

$$A \lor (B \land C) \mid = (A \lor B) \land (A \lor C)$$

1	A ∨ (B ∧ C)		
2	A		
3	A V B	<pre>Intr v:</pre>	2
4	A V C	<pre>Intr v:</pre>	2
5	(A ∨ B) ∧ (A ∨ C)	<pre>Intr </pre> :	3,4
6	В∧С		
7	В	Elim <a>h :	6
8	A V B	<pre>Intr v:</pre>	7
9	С	Elim A:	6
10	A V C	<pre>Intr v:</pre>	9
11	(A ∨ B) ∧ (A ∨ C)	Intr A:	8,10
12	(A ∨ B) ∧ (A ∨ C)	Elim V:	1,2-5,6-11

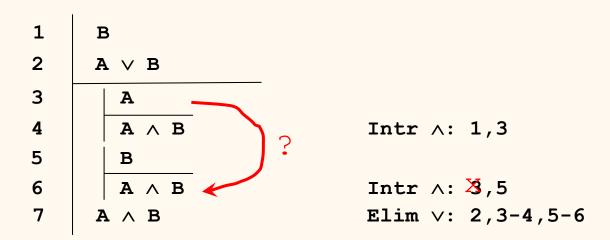
Distribuição da 🗸 em Relação à 🔨

$$(A \lor B) \land (A \lor C) \mid = A \lor (B \land C)$$

1	$(A \lor B) \land (A \lor C)$		
2	A V B	Elim <a>h :	1
3	A		
4	A ∨ (B ∧ C)	<pre>Intr v:</pre>	3
5	В		
6	A V C	Elim <a>h :	1
7	A		
8	A ∨ (B ∧ C)	Intr V:	7
9	C		
10	B A C	Intr A:	5,9
11	A ∨ (B ∧ C)	<pre>Intr v:</pre>	10
12	A ∨ (B ∧ C)	<pre>Elim \forall :</pre>	6,7-8,9-11
13	A ∨ (B ∧ C)	<pre>Elim v:</pre>	2,3-4,5-12

Visibilidade em Sub-Demonstrações

- Na aplicação das regras indicadas há que ter bastante cuidado com a visibilidade de fórmulas dentro das sub-demonstrações.
- Caso contrário podem cometer-se alguns erros óbvio como se pode ver no seguinte exemplo:
 { B, A ∨ B } | = A ∧ B ???



Importante: Dentro de uma sub-demonstração só se vêem as fórmulas das sub-demonstrações que a contêm.